Learn and Grow | Author Interviews | Book Summaries | Book lists | Summaries | Author Interviews | Shop Nonfiction books | Booklists | Non-fiction books | Book Reviews | Best Business Books | Best Management Books | Best Leadership Books | Best Business Strategy Books | Best Finance Books | Best Investment Books | Best History Books | Best World History Books | Best China History Books | Best India History Books | Best British India Books | Best American History Books | Best Science Books | Best Technology Books | Best Slavery Books | Best Economics Books | Best Macroeconomics Books | Best Health Books | Best Medicine History Books | Best Travel Books | Book Events | Author Events | Virtual Book Launch | Latest nonfiction books | Upcoming nonfiction books | Best University Presses | Harvard University Press | Yale University Press | Stanford University Press | Columbia University Press | Oxford University Press | Cambridge University Press | Chicago University Press | Pulitzer Prize | Recommended Books | Readara Book Experts | Readara Booklists | Readara Book summaries | Best Author Interviews | Best Nobel Prize Winners Books | Connect with Book Editors | Book Designers | Book Printers | Book Cover Designers | Best Book Agents List | Book PR and Marketing Agencies List | Book Wholesalers List Nonfiction books | Booklists | Non-fiction books | Book Reviews | Best Business Books | Best Management Books | Best Leadership Books | Best Business Strategy Books | Best Finance Books | Best Investment Books | Best History Books | Best World History Books | Best China History Books | Best India History Books | Best British India Books | Best American History Books | Best Science Books | Best Technology Books | Best Slavery Books | Best Economics Books | Best Macroeconomics Books | Best Health Books | Best Medicine History Books | Best Travel Books | Book Events | Author Events | Virtual Book Launch | Latest nonfiction books | Upcoming nonfiction books | Best University Presses | Harvard University Press | Yale University Press | Stanford University Press | Columbia University Press | Oxford University Press | Cambridge University Press | Chicago University Press | Pulitzer Prize | Recommended Books | Readara Book Experts | Readara Booklists | Readara Book summaries | Best Author Interviews | Best Nobel Prize Winners Books | Connect with Book Editors | Book Designers | Book Printers | Book Cover Designers | Best Book Agents List | Book PR and Marketing Agencies List | Book Wholesalers List | Book lists, Summaries, Author Interviews, Shop

Expedite your nonfiction book discovery process with Readara interviews, summaries and recommendations, Broaden your knowledge and gain insights from leading experts and scholars

In-depth, hour-long interviews with notable nonfiction authors, Gain new perspectives and ideas from the writer’s expertise and research, Valuable resource for readers and researchers

Optimize your book discovery process, Four-to eight-page summaries prepared by subject matter experts, Quickly review the book’s central messages and range of content

Books are handpicked covering a wide range of important categories and topics, Selected authors are subject experts, field professionals, or distinguished academics

Our editorial team includes books offering insights, unique views and researched-narratives in categories, Trade shows and book fairs, Book signings and in person author talks,Webinars and online events

Connect with editors and designers,Discover PR & marketing services providers, Source printers and related service providers

Distributed Market-Grid Coupling Using Model Predictive Control: Dissertation
  • Author Image
  • Publisher Logo
    Createspace Independent Publishing Platform

Distributed Market-Grid Coupling Using Model Predictive Control: Dissertation

0Arrow Icon
Rate this book Arrow Icon

Key Metrics

  • Yong Ding
  • Createspace Independent Publishing Platform
  • Paperback
  • 9781535120517
  • 11.02 X 8.5 X 0.51 inches
  • 1.26 pounds
  • Technology & Engineering > Electrical
  • English
$0
List Price:
$0
Save:
$0 ($%)
Format:
Paperback
Shipping
$4
Ships from:
-
Estimated Arrival:
May 22 -May 24
Available Copies:
10+ Copies
Ready To Buy:
Add to Cart
Secure Icon Secure Transaction
Sold By:
Readara.com
Add to My Wishlist

Book Description

Real-time monitoring of electricity grids' power flow, which reflects the physical reality of the power system, plays a crucial role in the power market, since the real-time market behavior often deviates from long-term market forecasts, due to unexpected supply-demand imbalances and the resulting price volatility. The real-time market results, in turn, have a major influence on the optimal dynamic economic dispatch of the power generation for stabilizing the power load in the grid. However, an appropriate market-grid coupling, in terms of a real-time interaction between the market and the grid, has not been designed to be available either from the grid network side or from the market structure side. In particular, in the context of Demand Response (DR), an incentive-driven load shedding or shifting for grid relief cannot be realized without an appropriate market-grid coupling. In this dissertation, a feedback control concept is proposed, designed and evaluated for modeling a market-grid coupling. The dissertation, also, addresses the research question of whether the market price as a feedback signal can effectively control the power dispatch in the grid, and vice versa. Recently, researchers have focused primarily on investigations of a complex interaction between the market and the grid, in terms of interoperability or controllability. This dissertation addresses rather a combination of both interoperability and controllability; namely an interoperable control between the market and the grid, by means of a closed-loop feedback control system. Essentially, this dissertation presents a novel approach with a closed-loop feedback control concept for the distributed market-grid coupling. One important part of the main contribution of this dissertation is the formal definition of the market-grid coupling. As the first requirement for the market-grid coupling, a real-time market model is designed and formulated as a power balancing option; Subsequently, a two-layer grid model is presented for an optimal dynamic dispatch (ODD) study. Based on both models, a definition of the market-grid coupling is formalized with a feedback control loop. Then, a further investigation and analysis of this formalized market-grid coupling is conducted in two different directions. A co-simulation framework that realizes a market-grid coupling is developed for studying the grid load's influence on the market price. In order to extend this unidirectional control towards an interoperable control between the market and the grid within the market-grid coupling framework, the system modeling of a MPC-based closed-loop feedback control system is presented, in which a market price optimization and a power dispatch optimization are performed concurrently. The problem formulation of the control system firstly focuses on a coupling model with a single grid unit and its correspondent local market. Subsequently, a distributed control architecture by means of a hierarchical MAS (Multi-Agent System) is presented for extending the centralized MPC problem of a local market-grid coupling to a distributed MPC problem of a distributed market-grid coupling. A distributed MPC strategy is adopted to decompose the overall grid into interconnected grid units, so that individual grid units achieve control objectives collaboratively. Different valuation use cases with IEEE bus system test cases are introduced. Simulation-based numerical results show that not only the centralized MPC formulation, but also the distributed MPC formulation, provide a clear stability of both the market price and the power load dispatch. Finally, an adaptive load forecasting framework is proposed to improve the STLF (Short-Term Load Forecasting) performance. The obtained accurate load forecasting result shows its benefit for solving the above MPC problems.
Distributed Market-Grid Coupling Using Model Predictive Control: Dissertation

Videos

No Videos

Community reviews

Write a Review

No Community reviews