Learn and Grow | Author Interviews | Book Summaries | Book lists | Summaries | Author Interviews | Shop Nonfiction books | Booklists | Non-fiction books | Book Reviews | Best Business Books | Best Management Books | Best Leadership Books | Best Business Strategy Books | Best Finance Books | Best Investment Books | Best History Books | Best World History Books | Best China History Books | Best India History Books | Best British India Books | Best American History Books | Best Science Books | Best Technology Books | Best Slavery Books | Best Economics Books | Best Macroeconomics Books | Best Health Books | Best Medicine History Books | Best Travel Books | Book Events | Author Events | Virtual Book Launch | Latest nonfiction books | Upcoming nonfiction books | Best University Presses | Harvard University Press | Yale University Press | Stanford University Press | Columbia University Press | Oxford University Press | Cambridge University Press | Chicago University Press | Pulitzer Prize | Recommended Books | Readara Book Experts | Readara Booklists | Readara Book summaries | Best Author Interviews | Best Nobel Prize Winners Books | Connect with Book Editors | Book Designers | Book Printers | Book Cover Designers | Best Book Agents List | Book PR and Marketing Agencies List | Book Wholesalers List Nonfiction books | Booklists | Non-fiction books | Book Reviews | Best Business Books | Best Management Books | Best Leadership Books | Best Business Strategy Books | Best Finance Books | Best Investment Books | Best History Books | Best World History Books | Best China History Books | Best India History Books | Best British India Books | Best American History Books | Best Science Books | Best Technology Books | Best Slavery Books | Best Economics Books | Best Macroeconomics Books | Best Health Books | Best Medicine History Books | Best Travel Books | Book Events | Author Events | Virtual Book Launch | Latest nonfiction books | Upcoming nonfiction books | Best University Presses | Harvard University Press | Yale University Press | Stanford University Press | Columbia University Press | Oxford University Press | Cambridge University Press | Chicago University Press | Pulitzer Prize | Recommended Books | Readara Book Experts | Readara Booklists | Readara Book summaries | Best Author Interviews | Best Nobel Prize Winners Books | Connect with Book Editors | Book Designers | Book Printers | Book Cover Designers | Best Book Agents List | Book PR and Marketing Agencies List | Book Wholesalers List | Book lists, Summaries, Author Interviews, Shop

Expedite your nonfiction book discovery process with Readara interviews, summaries and recommendations, Broaden your knowledge and gain insights from leading experts and scholars

In-depth, hour-long interviews with notable nonfiction authors, Gain new perspectives and ideas from the writer’s expertise and research, Valuable resource for readers and researchers

Optimize your book discovery process, Four-to eight-page summaries prepared by subject matter experts, Quickly review the book’s central messages and range of content

Books are handpicked covering a wide range of important categories and topics, Selected authors are subject experts, field professionals, or distinguished academics

Our editorial team includes books offering insights, unique views and researched-narratives in categories, Trade shows and book fairs, Book signings and in person author talks,Webinars and online events

Connect with editors and designers,Discover PR & marketing services providers, Source printers and related service providers

Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats

Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats

0Arrow Icon
Rate this book Arrow Icon

Key Metrics

  • Srinivasa Rao Aravilli
  • Packt Publishing
  • Paperback
  • 9781800564671
  • 9.25 X 7.5 X 0.82 inches
  • 1.52 pounds
  • Computers > Internet - Online Safety & Privacy
  • English
$0
List Price:
$0
Save:
$0 ($%)
Format:
Paperback
Shipping
$4
Ships from:
-
Estimated Arrival:
May 15 -May 19
Available Copies:
10+ Copies
Ready To Buy:
Add to Cart
Secure Icon Secure Transaction
Sold By:
Readara.com
Add to My Wishlist

Book Description

Gain hands-on experience in data privacy and privacy-preserving machine learning with open-source ML frameworks, while exploring techniques and algorithms to protect sensitive data from privacy breaches

Key Features
  • Understand machine learning privacy risks and employ machine learning algorithms to safeguard data against breaches
  • Develop and deploy privacy-preserving ML pipelines using open-source frameworks
  • Gain insights into confidential computing and its role in countering memory-based data attacks
  • Purchase of the print or Kindle book includes a free PDF eBook
Book Description

Privacy regulations are evolving each year and compliance with privacy regulations is mandatory for every enterprise. Machine learning engineers are required to not only analyze large amounts of data to gain crucial insights, but also comply with privacy regulations to protect sensitive data. This may seem quite challenging considering the large volume of data involved and lack of in-depth expertise in privacy-preserving machine learning.

This book delves into data privacy, machine learning privacy threats, and real-world cases of privacy-preserving machine learning, as well as open-source frameworks for implementation. You'll be guided through developing anti-money laundering solutions via federated learning and differential privacy. Dedicated sections also address data in-memory attacks and strategies for safeguarding data and ML models. The book concludes by discussing the necessity of confidential computation, privacy-preserving machine learning benchmarks, and cutting-edge research.

By the end of this machine learning book, you'll be well-versed in privacy-preserving machine learning and know how to effectively protect data from threats and attacks in the real world.

What you will learn
  • Study data privacy, threats, and attacks across different machine learning phases
  • Explore Uber and Apple cases for applying differential privacy and enhancing data security
  • Discover IID and non-IID data sets as well as data categories
  • Use open-source tools for federated learning (FL) and explore FL algorithms and benchmarks
  • Understand secure multiparty computation with PSI for large data
  • Get up to speed with confidential computation and find out how it helps data in memory attacks
Who this book is for

This book is for data scientists, machine learning engineers, and privacy engineers who have working knowledge of mathematics as well as basic knowledge in any one of the ML frameworks (TensorFlow, PyTorch, or scikit-learn).

Table of Contents
  1. Introduction to Data Privacy, Privacy threats and breaches
  2. Machine Learning Phases and privacy threats/attacks in each phase
  3. Overview of Privacy Preserving Data Analysis and Introduction to Differential Privacy
  4. Differential Privacy Algorithms, Pros and Cons
  5. Developing Applications with Different Privacy using open source frameworks
  6. Need for Federated Learning and implementing Federated Learning using open source frameworks
  7. Federated Learning benchmarks, startups and next opportunity
  8. Homomorphic Encryption and Secure Multiparty Computation
  9. Confidential computing - what, why and current state
  10. Privacy Preserving in Large Language Models
Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats

Videos

No Videos

Community reviews

Write a Review

No Community reviews